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Abstract

Observations of exoplanets have increased massively in recent decades but a vast
amount of their properties are unreachable for present observation methods. This
creates the desire for a fully consistent 3D climate model to better interpret meassure-
ments and get the most out of them. Clouds are one important part of such a highly
computationally expensive model. Their formation is connected to so-called cloud
condensation nuclei (CCN) which further start with the cluster formation process of
gas-phase species. The aim of this bachelor thesis is to answer how a simplification of
this process for the nucleation species TiO2 is affecting the formation of CCNs. For
this purpose, a closed kinetic nucleation approach was used, making several assump-
tions. TiO2, being highly reactive and relatively easy to model, was chosen to be
the only nucleation species. The cluster formation was studied for a homomolecular
polymer growth up to a maximum size of N = 10 and for the temperature range of
effective TiO2-cluster formation T = 400, . . . , 1000 K. The amount of different cluster
reactions available in a network is used as an indicator for its computational costs.
The cloud particle number densities nCP of 70 reduced networks, including between
8 and 18 reactions, were compared to the non-restricted network using 50 reactions.
Reduced networks show a shift of a few hours in time in the first simulation days and
a shift in the magnitude of nCP , after it converged to a constant value. In order to
minimize these shifts, four of the least deviating networks were combined to create
11 new networks using 12 to 24 reactions. It was achieved to keep the shift in the
long-term magnitude below 2 · 10−2 for all temperatures using a combined network
of 18 reactions. The results also highlighted a negative correlation between the shifts
and the number of reactions. Time shifts have moderate to strong correlation. In
contrast, the long-term shifts for T ≤ 900 K have weak, for T = 1000 K have no
and for T = 1100 K have moderate correlation. Thus, simplifications in the cluster
formation process can be performed with low effects on the long-term values of nCP .
In contrast, time shifts are connected with the number of reactions and therefore the
computational costs.
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Chapter 1

Introduction

In the last 30 years, more than 5000 exoplanets were discovered (Christiansen, 2022).
Some of the observations lead to a discussion about clouds and hazes on exoplanets
in order to explain the meassurements (Spyratos et al., 2021; Espinoza et al., 2018).
Clouds have a larger opacity than the exoplanetary atmosphere, so they would scat-
ter and absorb more radiation. Therefore the presence of clouds would have a major
impact on the results and interpretation of spectroscopy meassurements, which are
important for studying the atmospheric gas of extrasolar planets (Helling, 2019).
Aside from the influence in the observations, clouds can provide much more informa-
tion. For example, current reasearch is done on how the formation and evolution of
exoplanets can be inferred from the element abundancies in clouds (Madhusudhan,
2019). Thus, clouds have a crucial influence on many parameters and the embedding
of clouds in exoplanetary atmosphere models brings lots of advantages. On the other
hand, a full 3D-model of an exoplanetary atmosphere, including clouds, is consuming
a high amount of computational ressources (Marley et al., 2013).

In this thesis, the focus was put on a possibility to reduce the computational intensity
by a simplification of the cloud formation model. Cloud particles are the condensation
of gas onto so-called cloud condensation nuclei (CCN) (Hudson, 1993) which form
as follows. Under the right conditions, particles in the atmospheric gas can collide
and build clusters which again can grow further. When they reach a certain size, the
faster nucleation process sets in and they grow further until they are large enough,
allowing condensation by gas-suface reactions (Helling, 2019). This work, to be more
precise, investigated the cluster formation of a particular nucleation species: TiO2.
Despite TiO2 is far less abundant in exoplanetary atmospheres, it is highly reactive
and directly available in the gas (Helling, 2019; Lee et al., 2015). It was also chosen
to be a nucleation candidate in the works of Boulangier et al. (2019) and Sindel et al.
(2022).
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CHAPTER 1. INTRODUCTION

To accomplish this goal, this thesis dealed with the following three tasks:

1. Creation of reduced cluster formation networks for TiO2.

2. Evaluation of the change in cloud particle number densities for the reduced
networks.

3. Optimization of the networks for a minimum change in the cloud particle num-
ber density and for a maximum reduction of the cluster formation process

These tasks were fullfilled by establishing a closed kinetic nucleation network, similar
to Boulangier et al. (2019) and Köhn et al. (2021). Therefore initial conditions have
to be made for the atmospheric. The temperature range investigated was oriented
on the efficiency of the cluster formation of TiO2, which limits this thesis to lower
temperatures Boulangier et al. (2019). The number densities of the nucleation and
condensation species corresponse to their solar abundancies. The main idea for the
reduction of the cluster formation process is the following. The simulation setup
allows polymer-polymer cluster formation, which means that clusters of size n and m
can be combined into a cluster of size l = n+m (Boulangier et al., 2019). This allows
a huge amount of combinations, how a cluster can grow from its monomer to a higher
cluster size. The motivation for this thesis is the assumption, that not all paths of
growing are equally likely, leading to more relevant and less relevant reactions. An
elimination of the less relevant reactions is connected to less computational efford
but it might also change the resulting cloud particle number density. Thus, this
work investigated how the simplification affects the cloud particle number density by
comparing many different reduced network simulations to a simulation including all
reactions. To keep the number of different cluster growing possibilities within the
scope of this thesis, the maximum cluster size was set to N = 10. The physical
meaning of this number is that clusters of sizes N ≥ 10 were assumed to be far less
likely to fall apart and are therfore quickly growing further to CCN‘s. This number
could be extended to N = 15, as the backward rates can be at least calculated for
clusters up to this size (Sindel et al., 2022). For the chosen N = 10 in this thesis the
number of different cluster formation possibilities is 70 (see section 2.3). The aim
was to find the best of these networks and combine them to even better.
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Chapter 2

Methods

This chapter starts with an explanation about cloud formation and is then giving
a more detailed insight into the cluster formation process. Afterwards, the kinetic
nucleation network is introduced which builds the basis of the simulations done in this
thesis. Also the approach of this thesis to modify and reduce the cluster formation
network for TiO2 is explained and a notation for naming these networks is introduced.
In the end, two parameters were elaborated to measure the change in the cloud
particle number density obtained from two different network simulations.

2.1 Clouds and cluster formation

As already mentioned in chapter 1, there is no clear evidence for exoplanetary clouds
but they would have a huge impact on the whole system of an exoplanet. Clouds
are chemically very rich, resulting in an optically very thick layer which further leads
to a change in the temperature profile and an increase in absorption and scattering
(Marley et al., 2013). In addition, the source material species of cloud particles are
getting less abundant in atmospheric layers where clouds are formed Helling (2019).

Among others, the cloud formation has a minimum requirement, the occurrence of
cloud condensation nuclei (CCN). These act as seeds for the formation of cloud parti-
cles (Hudson, 1993). Condensation species like metal oxides, silicates, carbon species,
high temperature condensates and sulfur species condensate onto CCNs through gas-
surface reactions and grow to µm-sized cloud particles (Helling, 2019). CCNs are in
turn formed as follows and as shown in Figure 2.1.

After a collision of two particles, called nucleation species, they can stick together
and form a cluster. This cluster can grow again with a monomer (Helling, 2019) or,
as assumed in this thesis and the works of Boulangier et al. (2019) and Köhn et al.
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2.1. CLOUDS AND CLUSTER FORMATION CHAPTER 2. METHODS

(2021), with another cluster. Clusters can grow but also fall apart, which leads to
a net rate in forward direction if the conditions for cluster formation are met or in
backward direction otherwise (Boulangier et al., 2019). In this work it is assumed
that there is a certain cluster size N , for which all clusters of size N and larger
have far higher net forward rates than the cluster of size N − 1. This assumption is
supported by the decrease of the Gibbs free energy for larger clusters, which leads
to lower backward rates for larger clusters (Lee et al., 2015). Once a cluster greater
or equal to N is formed, it will efficiently nucleate to even larger sizes until it is big
enough for condensation – A cloud condensation nuclei has formed (Helling, 2019).

Figure 2.1: Schematic description of the cloud formation process. Monomers and
small polymers are growing to a cluster of size N by cluster formation. Due to
nucleation this cluster gets larger until it reaches the size of a cloud condensation
nuclei (CCN). The surrounding condensation species are then condensing onto the
CCN until a cloud particle is formed (Helling, 2019)

.

In particular, this thesis only allows homomolecular cluster formation and nucleation
of TiO2 as it is done in Sindel et al. (2022). The maximum cluster size which can be
formed during cluster formation is restricted to N = 10 in order to keep the number
of possible reactions forming this cluster size within the scope of this thesis. This has
also been assumed in Boulangier et al. (2019) and Köhn et al. (2021).
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2.2. KINETIC NUCLEATION THEORY CHAPTER 2. METHODS

2.2 Kinetic nucleation theory

For the calculation of the cloud particle number densities the same closed kinetic
nucleation approach as in Boulangier et al. (2019) and Köhn et al. (2021) is used.
The meaning of closed is that no interactions between other gas-phase species and no
mass exchange takes place to or from the outside of the network (Boulangier et al.,
2019). The theory for 1D systems from Tsai et al. (2017), using a zero spatial trans-
port flux, results in the ordinary differential equation Equation 2.1a. This equation
describes the change in the number density of a cluster of size i for one timestep. The
production rate Pi and the loss rate Li are further split up using the forward rate R+

i

and backward rate R−
i for each cluster of size i (see Equation 2.1b). The additional

spliting in four sums is used to show the four types of different reactions shown in
Figure 2.2. The number density of a cluster of size i is increased when two smaller
clusters form a cluster of size i (forward reaction) or when a larger cluster is falling
apart (backward reaction) and one of the two resulting clusters has size i. On the
other hand the number density decreases when it is falling apart in two smaller clus-
ters (backward reaction) or when it is further growing together with another cluster
(forward reaction).

dni

dt
= Pi − Li (2.1a)

=
∑

i=g+h

R+
g,h · ng · nh −

∑
i=g+h

R−
g,h · ni −

∑
l=i+j

R+
i,j · ni · nj +

∑
l=i+j

R−
i,j · nl (2.1b)

Figure 2.2: Schematic of the four different ways how the number density of a cluster
of size i can be changed. R+

g,h and R+
i,j are the forward rates of forming clusters of

size i = g + h and l = i + j, respectively. R−
g,h and R−

i,j are the backward rates of
clusters falling apart into the sizes g and h and the sizes i and j, respectively.
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2.3. REDUCED NETWORKS AND NOTATION CHAPTER 2. METHODS

The forward rate (see Equation 2.2) for two colliding clusters of size i and j is the
product of the total cross section of these clusters with their average relative speed
(Boulangier et al., 2019). Due to a lack of information the sticking coefficient had to
be set to one. Therefore it was assumed that all collisions lead to a cluster formation.
The backward rate is calculated by Equation 2.4 using the concept of minimising the
Gibbs free energy. This approach is picked up by many works in this research field
(Boulangier et al., 2019; Köhn et al., 2021; Lee et al., 2015; Tsai et al., 2017; Sindel
et al., 2022). This method assumes that the system has enough time between the
reactions to relax to the minimum energy state. In addition, no effects like a collision
can trigger the destruction process (Boulangier et al., 2019).

Forward reaction rate (Boulangier et al., 2019):

R+
i,j = π (ri + rj)

2 · v̄i,j (2.2)

with ri denoting the radius of a cluster of size i and mass mi. The last term is the
average relative speed:

v̄i,j =

√
8kBT

πµi,j

, with reduced mass µi,j =
mimj

mi +mj

(2.3)

Backward reaction rate (Boulangier et al., 2019):

R−
i,j = R+

i,j ·
P ◦

kBT
exp

(
G◦

i+j −G◦
i −G◦

j

kBT

)
(2.4)

The ◦ is denoting a standard pressure of P ◦ = 105 Pa, thus G◦
i means the Gibbs free

energy calculated at standard pressure for a cluster of size i. kB = 1.3806 · 10−23 J K−1

is the Boltzmann constant (Newell and Tiesinga, 2019) and T the gas temperature.

Equation 2.1a leads to a set of coupled ODE’s which can be solved for initial condi-
tions, which are introduced in chapter 3 for each simulation.

2.3 Reduced networks and notation

With the calculation of the forward rates R+ and backward rates R−, the approach
of this thesis for reducing reactions from a simulation network can be implemented.
The schematic in Figure 2.2 shows the rates to and away from a cluster of size i.
Setting one of these rates to zero is the same as removing the according reactions
from the network.
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2.3. REDUCED NETWORKS AND NOTATION CHAPTER 2. METHODS

In section 2.1 it was explained that a TiO2 cluster in the gas has many probabilities
of growing to a higher cluster size. Thus, there is not only one path to grow for a
monomer to the maximum cluster size N . Based on this, it was assumed that clusters
in the full polymer network would use some reactions more often than others, despite
all reactions were available for them. This motivated the assumption for this thesis
that there exist dominant paths which were more important than others for the cluster
formation.

For this work all non-cyclic paths have been determined using the following method.
It also introduces a notation for uniquly describing paths and therefore reduced net-
works. An example for this notation is shown in Figure 2.3i.

One path is a list of integers ni which represent the cluster size after i collisions. i is
also the position of the integer in the list starting with 0. Therefore, the first position
is the initial cluster size n0 = 1. For the collision i there are i possibilities for the
cluster of size ni to grow. For each possibility j = 0, . . . , i− 1, the next size ni has to
be the sum of the cluster bevor the reaction of size ni−1 and a cluster of the size nj.
A path is complete when the cluster size at the last position is equal to N . Paths
where the cluster size at the last position is greater than N are not considered.

Non-cyclic means that only forward paths without the occurrence of destruction
were considered because an additional cycle would lead to a path which is less likely
to be dominant. For example the path [1,2,4,6] is for sure more efficient than the
path [1,2,4,2,6] and therefore such paths are neglected. The calculation was fully
performed using N = 5 as an example in Figure 2.3ii and lead to three paths. It
should be highlighted that for this thesis no reactions for clusters to higher sizes than
N were included, although this would be for sure an non-physical behavior.

Reduced networks are now created for all paths up to N = 10 by setting all reaction
rates to zero which are not in the corresponding path. This lead to 70 reduced
networks which were investigated within this thesis.

(i) Reduced networks for N = 5 (ii) Network notation example

Figure 2.3: Progress of determining all paths up to N = 5 with red marked resulting
paths in (i) and using the path notation, for which an example is shown in (ii).
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2.4. COMPARING DIFFERENT NETWORKS CHAPTER 2. METHODS

2.4 Comparing different networks

The simulation results in the time evolution of the cloud particle number density. To
compare the results of two different networks with each other, the parameters prise
and pstatic were introduced to describe the deviation. In Figure 2.4 fictional results
for the cloud particle number densities of two simulation networks show how these
parameters can be interpreted. The results are therefore splited in two sections: The
rising section and the static section. The static section is defined by the time when
the rate of the cloud particle number density is less than a certain tolerance. The
rising section is then defined from the simulation start until the static section begins.

The comparison values are calculated by Equation 2.6 for pstatic and by Equation 2.5
for prise. As showed in Figure 2.4 the value pstatic is an indicator for a deviation in
the static section and prise for the rising section. prise can also be used as an indicator
for a shift in time. This is because of the fast rising at the beginning, leading to a
large increase in prise even for short time shifts.

prise = max
t≤tstatic

{log10

(
nI
CP (t)

nII
CP (t)

)
} (2.5)

pstatic = log10

(
n̄I
CP

n̄II
CP

)
, (2.6)

n̄I
CP is defined as the mean value of nCP (t) of the network I for t ≥ tstatic

Figure 2.4: Schematic of the results for the cloud particle number densities nCP of
two networks I (red) and II (blue). The rising and static section are marked and
defined by the time tstatic since when nCP is constant in time. It is shown which
deviations the two comparison values prise and pstatic are indicating
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Chapter 3

Results

This chapter shows the simulation results for three different kinds of networks which
differ only in the reactions available in the cluster formation process. The second
and third type are both reduced networks. For these types a notation was created to
better distinguish one from each other (see section 2.3).

1. A full polymer network including all forward and backward reactions which is
further called original network.

2. Networks which are reduced to a single specific cluster formation path. There-
fore, only reactions which are at least necessary to build the maximum cluster
of size N , starting from monomers, are included into this kind of networks.
For instance, the network 1-2-4-6-10 requires the monomer-monomer-, dimer-
dimer- and tetramer-hexamer-reactions. Reactions are included in forward and
backward direction. These kind of networks are further called path networks.

3. Networks reduced to multiple cluster formation paths. This kind of networks is
therefore just an extension of the second one. Here, the union of the reactions
of the individual paths are used. They are further called combined networks.

For the simulation, the set of coupled ODE’s from section 2.2 were solved using
’DLSODES’ developed from Hindmarsh et al. (2023). N = 10 was chosen to be the
maximum cluster size for cluster formation as explained in section 2.1. This thesis
only considers TiO2 as a cluster formation and nucleation species. The initial number
density of TiO2 in the gas was set to nT iO2 = 103 cm−3 as it is the same abundancy
Köhn et al. (2021) used for their polymer kinetic nucleation model. In addition,
Fe was also added with an abundancy of nFe = 3 · 105 cm−3 to the gas because Fe
and FeO were used beside TiO2 as condensation species (Helling and Woitke, 2006).
The fast and effective condensation properties of these species ensured an effective
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3.1. TEMPORAL DEPENDANCY CHAPTER 3. RESULTS

condensation for the simulation. There is no claim for this work on the correctness
of the condensation process, since the focus is on the cluster formation. Therefore,
no more condensation species were added, although there are many other species
mentioned in Helling and Woitke (2006).

Simulations were performed for the temperatures T = 400, 500, . . . , 1100 K for all
networks. For temperatures below, the kinetic energy of the clusters and therefore
the forward rates are too low for an effective cluster formation. For even higher
temperatures, an increased cluster evaporation occurs which leads to an increase in
the backward rate and again an ineffective cluster formation (Boulangier et al., 2019).

To compare the reduced networks with the original network the parameters prise (see
Equation 2.5) and pstatic (see Equation 2.6) were used.

3.1 Temporal dependancy

The first two figures compare the time dependancy of the cloud particle number
density nCP of the original network and the path networks. For this purpose, the
temperature T = 800 K was picked because at this temperature the number density
nCP shows a very general behavior over time for most of the networks. The plots for
all temperatures can be found in Figure 5.1.

The aim of Figure 3.1 is to show the curve progression of nCP and how the 70 path
networks (grey lines) differ in time from the original network (red line). In general,
nCP is rising quickly for all networks within the first one to two simulation days.
For example, the original network reaches 67 % in the first 1.5 days and 99 % in
the first 80 days. The networks are then slowly converging with a constant rate to
a maximum value. When the maximum is reached, the rate drops to zero. The
constant converging rate is too low to see a change in nCP at shorter time scales of
roughly 106 s to 1010 s for most of the networks. How long it takes for a reduced
network to reach the magnitude of the original network, if ever, is strongly depending
on the network and on the temperature.
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3.1. TEMPORAL DEPENDANCY CHAPTER 3. RESULTS

Figure 3.1: Logarithmic values of the cloud particle number densities over the log-
arithmic time. The original network (red line) is shown with all 70 path networks
(grey lines) for values above 10−5 cm−3 and up to 5 · 1017 s.

Figure 3.2 shows a smaller but more detailed section of the same simulations for just
the original and the five best path networks in the static section. Best is hereby
denoted to the lowest values of prise (see Equation 2.5). The fastest networks 1-2-
4-6-10 (green), 1-2-4-8-10 (orange) and 1-2-3-5-10 (pink) are reaching the original
network after about one to three days. The next network 1-2-3-5-7-10 takes about
five to seven days and the network 1-2-4-6-8-10 takes about 50 to 70 days. The
path network 1-2-4-6-10 (green) has the shortest temporal difference to the original
network, which is 5 h at its maximum. The original network reaches nCP = 4.2 cm−3

after 27 h while 1-2-4-6-10 takes 31 h to reach the same value.
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3.2. NETWORK COMBINATIONS CHAPTER 3. RESULTS

Figure 3.2: Detailed section of logarithmic values of the cloud particle number densi-
ties over the logarithmic time. The original network (red line) is shown with the five
least time deviating path networks (colored lines) for values above 10−3 cm−3 over
one year simulation time.

3.2 Network combinations

The comparison values prise (see Equation 2.5) and pstatic (see Equation 2.6) were
calculated according to section section 2.4 for each path network and temperature.
The results for prise stayed within the same scale for all networks and in contrast,
pstatic differs in orders of magnitude for the different networks. Thus, for pstatic the
logarithmic value is plotted and for prise not. Figure 3.3 and Figure 3.4 show on
the one hand in their subfigures (i) on which scale the path networks differ from the
original network for different temperatures. On the other hand, they also show below
in their subfigures (ii) the results of the network optimization which was performed
as follows.

In a first step, the comparison values pstatic and prise were determined and plotted
over temperature for all 70 path networks (see Figure 3.3i and Figure 3.4i). To ensure
the overview but still see the general trend, only networks which lead to the smallest
value for at least one temperature were colored and the others were greyed out. For
prise two and for pstatic five networks are considered to be the best. These networks
build the basis for the decision about which networks should be combined. As it will
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be explained in section 4.4, the following four networks were combined: 1-2-4-6-10
(a), 1-2-4-5-10 (b), 1-2-3-5-6-8-9-10 (c) and 1-2-3-4-8-9-10 (d). The letters a,b,c and
d are further used for naming the combined networks. For example (abd) is the name
of the network containing the union of the reactions of the path networks (a), (b)
and (d). This combination lead to eleven combined networks for which pstatic and
prise were again plotted over temperature (see Figure 3.3ii and Figure 3.4ii). The four
best path networks were also added to these figures (dashed lines).

14



3.2. NETWORK COMBINATIONS CHAPTER 3. RESULTS

(i) all networks

(ii) least deviating networks in static section and their combinations

Figure 3.3: Logarithmic value of pstatic for the temperatures T = 400, . . . , 1100 K. In
(i) all 70 path networks (grey lines) are shown and networks with the smallest value
for at least one temperature were colored. Four of the highlighted networks in (i) are
again plotted in (ii) using dashed lines together with all of their combinations using
solid lines.
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(i) all networks

(ii) least deviating networks in static section and their combinations

Figure 3.4: Comparison value prise for the temperatures T = 400, . . . , 1100 K. In (i)
all 70 path networks (grey lines) are shown and networks with the smallest value
for at least one temperature were colored. In (ii) the combinations of four of the
least deviating networks in the static section are shown using solid lines. Network
1-2-4-6-10 (a) is added as the only least deviating network in the rising as well as in
the static section.
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3.2. NETWORK COMBINATIONS CHAPTER 3. RESULTS

The comparison values pstatic and prise were collected for the networks (a), (b), (c), (d)
and their combinations in Table 3.1. The values for prise are constant up to 1000 K.
In the range 500, . . . , 800 K the values of pstatic are varying less than 20 %. Due to the
logarithmic scaling, this is small enough so that this temperature range is represented
by 700 K. Therefore, just the temperatures 400, 500, 700, 1000 and 1100 K are shown
for pstatic in Table 3.1 to ensure the overview of the table.

The results suggest that there is a correlation between prise and the number of reac-
tions, so the correlation coefficient (Kohn, 2005) was calculated for each temperature
for both comparison values. The calculations were added on the bottom of the table
in the last row.

Table 3.1: Comparison values pstatic and prise and the number of reactions NR for the
networks 1-2-4-6-10 (a), 1-2-4-5-10 (b), 1-2-3-5-6-8-9-10 (c) and 1-2-3-4-8-9-10 (d) and
their combinations for T = 400, . . . , 1100 K. The last row, separated by double lines
contains the correlation coefficient R for each temperature between the comparison
values and NR. These values are subject to uncertainties due to assumptions made
in the simulation model.

name NR
pstatic prise

400 K 700 K 900 K 1000 K 1100 K ≤ 1000 K 1100 K
a 8 6 · 10−5 5 · 10−5 2 · 10−5 7 · 10−4 1 · 10−1 1.4 2.2
b 8 4 · 10−4 6 · 10−5 5 · 10−5 9 · 10−4 6 · 10−1 1.8 1.8
c 14 1 · 10+0 1 · 10+0 2 · 10−2 1 · 10−2 2 · 10−3 2.6 2.6
d 12 1 · 10+0 1 · 10+0 4 · 10−3 3 · 10−6 3 · 10−1 2.6 2.6
ab 12 7 · 10−4 8 · 10−5 1 · 10−4 7 · 10−4 1 · 10−1 1.2 2.0
ac 20 5 · 10−4 5 · 10−5 1 · 10−4 1 · 10−3 2 · 10−2 1.2 1.3
ad 18 1 · 10−3 8 · 10−4 1 · 10−4 4 · 10−4 1 · 10−1 0.9 1.4
bc 20 1 · 10−4 3 · 10−5 1 · 10−4 6 · 10−3 3 · 10−2 1.0 1.3
bd 18 1 · 10−2 1 · 10−2 7 · 10−3 2 · 10−4 3 · 10−1 1.2 1.4
cd 18 1 · 10+0 1 · 10+0 2 · 10−2 6 · 10−3 5 · 10−4 2.3 2.3
abc 24 6 · 10−4 2 · 10−4 2 · 10−4 1 · 10−3 4 · 10−2 0.7 1.0
abd 22 9 · 10−5 2 · 10−4 2 · 10−4 7 · 10−4 1 · 10−1 0.8 1.4
acd 24 4 · 10−3 4 · 10−3 3 · 10−3 9 · 10−4 2 · 10−2 0.8 0.9
bcd 24 8 · 10−4 3 · 10−4 1 · 10−4 2 · 10−3 3 · 10−2 0.8 0.9
abcd 28 5 · 10−4 3 · 10−4 3 · 10−4 7 · 10−4 4 · 10−2 0.5 0.7

R -0.30 -0.30 -0.15 -0.07 -0.59 -0.66 -0.78
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Chapter 4

Discussion

The results of chapter 3 are discussed in the following sections starting with the
limitations of this work. Then the temporal behavior of nCP is analysed and the
similarities between networks with a high value of pstatic are pointed out. Afterwards,
the temperature dependancy of nCP is explained for path networks.

4.1 Limitations

In order to stay within the scope of this thesis, some restrictions had to be made. In
this chapter, the most important limitations were discussed.

The most important restriction of this bachelor thesis is that only Fe and FeO have
been implemented, beside TiO2, as condensation species. This is because of the
consumption of Ti and O by condensation species like FeO or others contatining
titanium and oxygen, e.g. SiO, MgO or CaTiO3 (Helling, 2019). Therefore the
abundancies of Ti and O are higher in this bachlor thesis than they actually are on
exoplanets. This also leads to a higher abundancy of TiO2 and so to more mass
available in the cluster formation process. In addition to this, smaller particles are
growing faster because of a larger surface to volume ratio, which means that clusters
are growing faster to the size of cloud particles than existing cloud particles are
growing to larger sizes. The consequence for this bachelor thesis is that the absolute
value of the determined cloud particle number densities occur to be higher than they
are on real exoplanets, where many other condensation species exist.

In addition, the restriction of TiO2 to be the only cluster formation and nucleation
species is a huge simplification for this work. This is because clusters of TiO2 are
simply adding up during cluster formation (Köhn et al., 2021). Therefore, these
processes are easier to understand and interpret. On the other hand, TiO2 is not
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nucleating efficiently for temperatures above 1000 K and titanium has low abundan-
cies (Boulangier et al., 2019; Köhn et al., 2021). Because of this TiO2 might be less
relevant than other nucleation species.

Another important restiction is that the simulation network was chosen to be a closed
network, thus no mass is exchanged to or from the outside of the network. Therefore,
this restriction has a guaranteed impact on the time evolution of the cloud particle
number density as it remains constant when the source material (smaller clusters)
is fully depleted. This is a clear non-physical behavior as heavier cloud particles
would start sinking due to the gravitational force and then evaporate in layers of
higher temperatures. The evaporated elements would rise again and replenish the
source material for cluster formation (Helling, 2019). This is also likely to impact the
efficiency of the reduced networks as lower cluster sizes would have higher number
densities due to the element replenishment and reactions depending on such clusters
would have higher rates than calculated in this work.

Furthermore, there is the restriction to the highest cluster size of N = 10 of the
cluster formation network. For higher N the number of different paths to reach N
explodes quickly. For example, N = 10 results in 70 different paths but for N = 15
there would be 1745 different possibilities. Sindel et al. (2022) calculated the Gibbs
free energies, which are necessary for determining the backward rates of the clusters,
up to N = 15. Therefore, it would be possible to upscale this work to a higher N .

4.2 Temporal dependancy

The temporal behavior of nCP can be explained by looking at the initial conditions of
the simulations and the restriction to a closed network (see section section 4.1). Each
simulation is starting with only TiO2 monomers which are rapidly forming (TiO2)2
and other small clusters. Since Sindel et al. (2022) and Lee et al. (2015) showed
that the Gibbs free energy is decreasing with larger cluster sizes up to N = 10, the
backward rates of larger clusters are lower than those of smaller clusters. Therefore,
larger clusters grow on the cost of smaller clusters and thus their number densities
decrease. At the beginning of the simulation, the densities are high enough and ensure
an efficiently strong growth of nCP for all networks in Figure 3.1. Once a cluster of
size ten is formed, it is nucleating to a CCN and a cloud particle is formed from
it, resulting in a continuous outflow of material from the ongoing cluster formation.
Furthermore, no new monomers can be created because the network was restricted to
be a closed network. At some point in simulation time, the number densities of the
smaller clusters are too low to form (TiO2)10-clusters efficiently. Then the rate of the
cloud particle number density drops in orders of magnitude. Within the conditions
and benchmark temperature of T = 800 K, the timesteps needed to see a change in
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nCP is around hundreds of years, which is in huge contrast to the time of 1.5 days to
reach 67 % of the maximum nCP for the original network. The time scales in this work
are suported by the results of Boulangier et al. (2019), in which a converging time
for the cluster formation of (TiO2)10 of roughly 20 days were stated for T = 1000 K.
Figure 5.1vii in the appendix shows for this thesis that after 20 days 98 % of the
maximum nCP is reached for the original network.

An analysis of the comparison value pstatic for T = 800 K shows that there is a
connection between high values and some reduced networks. As pstatic is almost
constant for lower temperatures, this analysis holds also for all temperatures smaller
than 800 K. pstatic = 0.33 splits the 70 path networks in two halves, which means
that there are 35 networks having a value higher than it and are therefore differing
more from the original network. 80 % of these networks have in common that the
final (TiO2)10-clusters have to be build from the clusters (TiO2)9 and TiO2. This
seems reasonable as the number density of TiO2 is decreasing much earlier than the
one of (TiO2)9 is rising (Lee et al., 2015).

Figure 5.1 of the appendix shows that the time for nCP to reach its maximum is in
general the shortest for 1000 K and gets higher for lower and higher temperatures.
For lower temperatures, the collision rate decreases and for higher temperatures the
clusters become less stable.

Beside the shift in the magnitude of nCP for a reduced and the orignial network
there is a shift in time. The rising of nCP starts earlier in the original network than
in the reduced networks. One reason could be that the original network allows the
building of the (TiO2)10-cluster for all smaller clusters and a reduced network like
the monomer path 1-2-3-4-5-6-7-8-9-10 can only produce a cluster of size ten from
a cluster of size nine which again has to be produced from the next smaller cluster
before and so on. Figure 3.2 shows that networks containing a small number of
reactions like 1-2-4-6-10 (green) and 1-2-4-8-10 (orange) have a smaller time shift.
These networks have two advantages, they only need a minimum amount of steps to
build size ten and the number densities of the building clusters are high because the
cluster material is distributed on fewer different cluster sizes.

4.3 Temperature dependancy

The dependancy of nCP on the temperature is strongly varying on the network under
consideration. Therefore, the following discussion is mostly focusing on the main
trend of all networks rather than on the behavior of individual networks.

For the static section, the comparison value pstatic shows almost no changes for lower
temperatures up to 900 K. It appears that 70 % of the networks have values larger
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than 10−1 and only 14 % have values smaller than 10−3. Most of the first ones have in
common that they require a lot of monomer reactions like the networks 1-2-3-5-6-8-9-
10 (c) and 1-2-3-4-8-9-10 (d) having five. In contrast the second ones are fast polymer
growing networks like 1-2-4-6-10 (a) and 1-2-4-5-10 (b) having just the minimum
required first monomer reaction. Therefore the polymer reactions are considered to be
more efficient for lower temperatures. This is consistent with the work of Boulangier
et al. (2019), in which their monomer network has an effective cluster formation only
for the sharp edged temperature of 1000 K. This also explains the trend of most of
the monomer required networks to lower values of pstatic for temperatures of 900 K to
1000 K. Köhn et al. (2021) stated that for higher temperatures than 1000 K, larger
cluster are getting more unstable due to a high evaporation, which might explain the
trend of almost all networks to higher deviations for 1100 K.

There is a small difference of roughly one magnitude higher values of pstatic, lowering
the temperature from 500 K to 400 K. This is considered to be the case due to low
collision rates as mentioned in Köhn et al. (2021).

In contrast, the comparison value prise as an indicator for the rising section is almost
not temperature dependent, except for a few networks that have a jump from 900 K
to 1000 K. The reason for this is considered to be the same as for the rising of pstatic,
the high evaporation rate for high temperatures.

4.4 Network combinations

The network optimization was based on the aim of a low deviating combined network
for the whole temperature range of T = 400, . . . , 1100 K. The least deviating networks
for each temperature are shown in Figure 3.3i for the static section and in Figure 3.4i
for the rising section with colored lines. There are five networks in the static section
but only four of them were used for the optimization. Since the best network 1-2-3-4-
8-10 at T = 400 K is in the same order of magnitude as the networks 1-2-4-6-10 and
1-2-4-5-10 but is almost one order of magnitude worse in the remaining temperature
range, it was not considered for the optimization. For the optimization, due to the
static section, the networks 1-2-4-6-10 (a) and 1-2-4-5-10 (b) were chosen because
they are both similarly covering all temperatures up to T = 900 K. Furthermore, the
networks 1-2-3-5-6-8-9-10 (c) and 1-2-3-4-8-9-10 (d) were selected because of their
much lower values of pstatic at T = 1000 K and T = 1100 K. In the rising section, the
comparison value prise lead only to two best temperature networks but one of them,
(a), has already been considered in the static section. Adding the remaining network
1-2-4-5-6-10 would almost double the number of combination from eleven for four
networks to 21 for five networks. Since the value for this network is not significantly
lower than the value of network (a), it was also not considered for the optimization.
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The main approach of the network optimization was therefore to combine the good
low temperature properties of (a) and (b) with the good high temperature properties
of (c) and (d).

The results of the combination of networks showed that in the low temperature range,
until 800 K, the combination (bc) using 20 reactions was the only combined network,
which improved the comparison value pstatic but stays within the same orders of
magnitude as the networks (a) and (b) using eight reactions. For 1000 K the network
(d) is still two orders of magnitude better than any other reduced network. The
combination (cd), using 18 reactions, reduced the value of pstatic from 2 · 10−3 of
network (c), using 14 reactions, to 5 · 10−4.

The aim of the optimization was to find a network which is least deviating for the
whole temperature range. Therefore, the maximum deviation over the whole tem-
perature range was used to find the optimal network, which is leading to the two
networks (ac) using 20 and (acd) using 24 reactions. For both networks, the compar-
ison value pstatic stayed below 2 · 10−2 for all temperatures and because (ac) has less
reactions, it is stated to be the best combined network in the static section.

In the rising section, the most improvements to the value prise were made by the
combination of all networks (abcd) using 28 reactions. This reduced its value by
roughly a factor of three compared to (a) using 8 reactions to prise = 0.5 for 1000 K
and prise = 0.7 for 1100 K.

The effects of the optimization on the comparison values were compared. It showed
that including reactions to a network does not necessarily lead to an improvement in
the static section. In contrast, the trend for an improvement within the rising section
is high when reactions were included to the network. These statements were also
supported by the results Table 3.1, showing the correlation between the comparison
value and the number of reactions included in the network. Even the highest correla-
tion for pstatic predicts only moderate correlation for 1100 K with R = −0.59. On the
other hand, the correlation for prise is moderate with R = −0.66 for less than 1000 K
and almost strong with R = −0.78 for 1100 K (Kohn, 2005).

It should be emphasised that there is no correlation predicted for 1000 K in the static
section, which offers most opportunities for improvements at this temperature. This
is confirmed by the result of network (d), which gives by far the least deviant value
for pstatic despite the inclusion of only 14 reactions.
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Conclusion

This thesis reached its aim of creating a simplified TiO2 cluster formation network
up to (TiO2)10. 70 reduced networks were constructed by an elimination of clustering
reactions. In contrast to the original full polymer network, which is using 50 reactions
for building clusters of size 10, the reduced networks are including just 8 to 18.
Simulations for these networks were performed, using the closed kinetic nucleation
approach of Boulangier et al. (2019), to show that the reduction of reactions affected
the cloud particle number density nCP in the following two ways:

1. Shift in time during the strong rising at the beginning of the simulation. The
original network is rising in the order of hours earlier than the reduced networks.

2. Shift in the magnitude of nCP during the static section, after a few days simu-
lation time, when the rate of nCP dropped. The original network is between 1
to 3 · 10−6 orders of magnitude higher than the reduced networks.

The reduced networks were evaluated regarding to the shift in the magnitude for
the temperature range T = 400, . . . , 1100 K. This leads to the four least deviating
networks 1-2-4-6-10 (a) with 8 reactions, 1-2-4-5-10 (b) with 8 reactions, 1-2-3-5-6-
8-9-10 (c) with 14 reactions and 1-2-3-4-8-9-10 (d) with 12 reactions. The maximum
deviation of nCP over all temperatures was the smallest with pstatic = 10−1 for network
(a) within the static section and with prise = 1.8 for (b) in the rising section.

In order to keep the maximum deviation of nCP over all temperatures as low as
possible, the above reduced networks were further combined. The combination (ac)
with 18 reactions was able to reduce this value to pstatic = 2 · 10−2 in the static
section. In the rising section, the combined network (abcd) with 28 reactions lead to
the smallest value of prise = 0.7.

The evaluation of the networks (a), (b), (c) (d) and their combinations showed a
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temperature dependent correlation between the deviation in nCP and the number of
reactions included in the networks. The analysis stated zero to weak negative correla-
tion for temperatures T ≤ 1000 K and moderate negative correlation for T = 1100 K
in the static section. For the deviation in the rising section of the simulation, mod-
erate negative correlation was found for T ≤ 1000 K and strong negative correlation
for T = 1100 K. This offers opportunities of reducing reactions from the cluster for-
mation network in the static section, especially for T ≤ 1000 K, without leading to a
strong change in the cloud particle number density.

Thus, this work showed a way to simplify the cluster formation process of TiO2 and
pointed out how it influences the cloud particle number density.
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Appendix

(i) 400 K

Figure 5.1: Logarithmic cloud particle number densities over logarithmic time is
shown for each temperature T = 400, 500, . . . , 1100 K. The original network (red
line) is shown with all 70 path networks (grey lines) for values above 10−5 cm−3 and
up to 5 · 1017 s.
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(ii) 500 K

(iii) 600 K

Figure 5.1: Logarithmic cloud particle number densities over logarithmic time is
shown for each temperature T = 400, 500, . . . , 1100 K. The original network (red
line) is shown with all 70 path networks (grey lines) for values above 10−5 cm−3 and
up to 5 · 1017 s. (continued)
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(iv) 700 K

(v) 800 K

Figure 5.1: Logarithmic cloud particle number densities over logarithmic time is
shown for each temperature T = 400, 500, . . . , 1100 K. The original network (red
line) is shown with all 70 path networks (grey lines) for values above 10−5 cm−3 and
up to 5 · 1017 s. (continued)
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(vi) 900 K

(vii) 1000 K

Figure 5.1: Logarithmic cloud particle number densities over logarithmic time is
shown for each temperature T = 400, 500, . . . , 1100 K. The original network (red
line) is shown with all 70 path networks (grey lines) for values above 10−5 cm−3 and
up to 5 · 1017 s. (continued)
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(viii) 1100 K

Figure 5.1: Logarithmic cloud particle number densities over logarithmic time is
shown for each temperature T = 400, 500, . . . , 1100 K. The original network (red
line) is shown with all 70 path networks (grey lines) for values above 10−5 cm−3 and
up to 5 · 1017 s. (continued)
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