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Abstract
This report investigates the size dependence of cloud particles advecting in a Hot Jupiter
atmosphere and the behaviour of cloud particles (of varying sizes) based on the initial conditions
of the cloud particle system using Hot Jupiter GCM simulations. Depending on the sensitivity
degree of the initial conditions of the system, the system can be termed as chaotic if the
Lyapunov exponent is a positive integer. We calculate the drag force of the gas particle and
the equilibrium drift velocity of the cloud particle for a given set of cloud particle radii using
hydrodynamic equations. We, then, obtain Lyapunov spectra between the same set of cloud
particle radii and find that the system shows a small chaotic behaviour. A correlation between
the results can be established using Pearson’s correlation method. Understanding the degree of
chaos in a cloud particle system being advected in Hot Jupiters can help us model turbulence
in climate and atmosphere models of Hot Jupiters more accurately.
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Chapter 1

Introduction

1.1 Cloud particles on exoplanets
Exoplanetary atmospheres have similar features to that of Earth’s atmosphere. The basic pho-
tochemistry, transport processes and behaviour of atmospheric constituents (to some extent)
are alike. But based on the type of exoplanet, the specifics might vary. This project considers
Hot Jupiters - a class of extrasolar gas giants that are physically similar to Jupiters with high
surface and atmospheric temperatures and shorter orbital periods (P < 10 days). [1] They are
tidally locked (i.e., one side of the planet always facing the star) and are in close proximity to
their host stars. So, their dayside surface temperatures are greater than or equivalent to 1000
K. [2] [3] For example, Hot Jupiters are, predominantly, made up of H2 and He gases.

In Hot Jupiters, the atmospheric particles (gas, dust and cloud) are equally affected by the
transport processes like diffusion, advection and convection. In this project, only the advection
process is considered. Advection is a process in which a bulk fluid material is displaced from
one region to another through its motion. Few models on these Hot Jupiter atmospheres
predict high intense winds and super-rotating equatorial jets along with advection. [4] The
cloud particles in Hot Jupiters may be chemically rich, i.e., they are not made up of single
material but rather they are a mixture of all the materials present. The cloud particles and
exoplanet clouds, in general, can be affected by the gas density, temperature and wind speed
in the said exoplanet. [5]

When the drag force of the wind is large, the cloud particles move through the atmosphere
along with gas particles. On the other hand, when the drag force is not large enough, the
cloud particles undergo gravitational settling, which is a key process in cloud formation in
exoplanets. During gravitational settling, the cloud particles fall through the atmosphere with
a terminal or equilibrium drift velocity, which is determined by the particle’s size and density.
[6] The cloud particle reaches equilibrium drift velocity when the drag force of the fluid acting
on it becomes equal to its weight.

1.2 Chaotic systems
Chaos theory is a branch of mathematics, and even physics, that investigates the unpredictable
behaviour of a non-linear deterministic system. The system is deterministic, i.e. a system in
which no randomness is involved in the development of the future state of the system. It will
always produce the same output when the initial states don’t change. In addition, the system
is nevertheless unpredictable, because of the sensitive dependence on the initial conditions. A
small error in these initial conditions can produce a completely different output. [7], [8], [9]

A well-known example of chaos is the weather. In 1922, Richardson discovered that weather
could be predicted numerically, as a function of wind, temperature, pressure and various other
weather variables. Following this discovery, Lorenz, in 1961, developed a simplified model for
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Lorenz attractor

the atmospheric convention. This model is now known as the Lorenz attractor, see Figure 1.1.
While using the Lorenz attractor, he accidentally discovered that when entering a rounded
number used instead of the full number, the result was completely different in the long run.
This was the beginning of Chaos Theory, making it clear that weather predictions are impos-
sible to predict in the long term because a small change in the initial conditions can lead to a
completely different prediction. [10], [11]

Because it’s the Earth’s atmosphere, and thus our weather, that behaves chaotically, it is
interesting to see if this is also visible in simulations using data from exoplanets. This project
investigates the influence of cloud particle size and whether these different sizes cause chaos
to occur.



Chapter 2

Methods

2.1 Simulation
General Circulation Model (GCM or MITgcm) is a model that is devised to study the at-
mosphere, climate and oceans of a planet. It solves the equations of hydrodynamics, which
predict the behaviour of a planet’s atmosphere over a period of time. Although GCM was
originally designed for Earth’s atmosphere and climate, it can also be used to study Hot Jupiter
atmospheres. This is done by changing the input parameters (like temperature and pressure
conditions) of Earth to that of a Hot Jupiter. Clouds are then incorporated into the results of
the temperature profile and winds generated by the GCM. [12]

The simulation code calculates the following quantities, after which it generates three plots:
Equatorial slice, Pressure slice and Lyapunov exponent-time graph. (see Subsection 3.1)

i Calculation of the cloud particle’s path: The index of coordinates of the particle at any
given time is calculated using the LSODA solver1. The values of the velocity of the parti-
cle in the x, y and z axes, temperature and density are obtained using linear interpolation
in 3D. [13]

ii Calculation of drag force of the gas particle: Since the behaviour of gas particles around
cloud particles changes as the size and drift velocity of the cloud particles changes, it is
difficult to calculate the drag force or frictional force for Hot Jupiters. So, the behaviour
of gas particles is determined based on two dimensionless numbers, the Knudsen number
(Kn) and the Reynolds number (Red).

Knudsen number (Kn) is the ratio between the mean free path length of the gas
particles to the diameter of the cloud particle. [14]

Reynolds number (Red) is the ratio between the inertial force to the drag force and
it predicts the fluid flow pattern.

Based on the gas flow in the atmosphere and the interaction of atmospheric particles,
we have three cases in which drag force and equilibrium drift velocity can be calculated.

1) The free molecular flow (Kn»1): The drag force due to elastic collisions between
cloud and gas particles is given by [15]

Fsch
f ric =−πa2

ρ|v|v.

[(
1+

1
s2 −

1
4s4

)
er f (s)+

(
1
s
+

1
2s3

)
e−s2

√
π

]
1The LSODA solver is a solver for first-order Ordinary Differential Equations (ODEs) that automatically

switches between stiff and non-stiff methods based on the data.
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where s = |v|/
√

2kT/µ . Here, a - radius of the cloud particle, v - drift velocity
between cloud particle and gas, ρ - density of the cloud particle, k - Boltzmann
constant and µ - mean molecular weight of the gas particle.

2) The viscous case (Kn«1): The drag force, according to continuum mechanics, is
[16]

FLBS
f ric =−πa2cD

ρ

2
|v|v

where the drag coefficient, cD is given by

cD =

{ 24
Red

(1+0.15Re0.687
d ) Red ≤ 500

9.5×10−5Re1.397
d 500 < Red ≤ 1500

2.61 Red > 1500.

Reynolds number is given by Red = 2aρ|v|
µkin

, where µkin is the kinematic viscosity of
H2 gas and is defined as µkin = 5.877×10−6

√
T .

3) The general case (Kn ≈ 1): In this case, the flow is known as transition flow.
The drag force, here, is found by interpolating drag force terms for high and low
Knudsen number limits as shown below, [14]

F f ric = Fsch
f ric

(
3Kn

3Kn +1

)2

+FLBS
f ric

(
1

3Kn +1

)2

iii Calculation of equilibrium drift velocity of the cloud particle: The cloud particle falling
will accelerate until the drag force and gravitational force acting on it becomes equal, i.e.,
it attains equilibrium drift velocity. From Newton’s law, the expression for equilibrium
drift velocity can be written as v′dr = |F f ric|+mg, where m = 4π

3 a3ρ , is the mass of the
cloud particle.

iv Detection of chaos in the cloud particles’ paths: This will be covered in Subsection 2.2.1

In this project, we consider that the clouds are dominated by SiO2. Therefore, the parameters
in Table 2.1 were chosen. The cloud particles on exoplanets are expected to have a size of
around 1× 10−6 cm. We have done several simulations with particles that have a slightly
larger size order, since it doesn’t work for this small size. The main simulations are listed in
Table 2.2.

Parameter Value Units
Mean weight of the cloud particle (m) 2.35×1.66054×10−24 g
Density of the cloud particle (ρ) 2.65 g cm−3

Maximum time 106.31 s

Table 2.1: Input parameters used in the simulation
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Simulation Radii
1 1×10−5 cm 1×10−4 cm 1×10−3 cm
2 1×10−4 cm 1×10−3 cm 0.01 cm
3 1×10−3 cm 0.01 cm 0.1 cm
4 0.01 cm 0.1 cm 1 cm

Table 2.2: The radii used in the simulations

2.2 Analysis
2.2.1 Detection of chaos

y(t)

x(t)

y(0) - x(0)

Figure 2.1: The Lyapunov
exponent

After running the simulations, these are analysed. This anal-
ysis checks whether the particles behave chaotically. Quan-
titative calculation of chaos is done using Characteristic
Lyapunov exponents, which are associated with each tra-
jectory x(t). That indicator calculates the sensitivity de-
gree of the initial conditions of the system. So this
means it calculates how unpredictable the system will be-
have in the long run. Now, any system that has at least
one positive Lyapunov exponent is defined as chaotic.[17],
[18]

The Characteristic Lyapunov exponent is calculated from the
trajectory x(t), for which it holds that x(t + 1) is calculated from the value of x(t). The
stability of this trajectory can be studied by looking at its evolution. Suppose a trajectory
y(t) arising from the initial condition y(0) deviating from x(0): y(t) = x(0)+ δx(0). When
the system is not chaotic, the distance between x(t) and y(t) will remain bounded, or that
distance will grow algebraically. But for chaotic systems this is not the case, then that distance
grows exponentially with time y(t)− x(t) ∼ [y(0)− x(0)]γt (see Figure 2.1), where γ is the
local exponential acceleration of the divergence. The average exponential acceleration of the
divergence is calculated, we can also call it the maximum Lyapunov exponent.[18]

λmax = lim
t→∞

lim
δ (0)→0

1
t

log(
δ (t)
δ (0)

)

It is also interesting to look at the evolution of the Lyapunov exponent. This can be done by
plotting a Lyapunov spectrum, where the Lyapunov exponent is plotted against the time step.
So at time step t̃, we find the Lyapunov exponent λ (t̃) = limδ (0)→0

1
t̃ log( δ (t̃)

δ (0))

2.2.2 Particle radii difference and heterogeneity
The principal aim of the analysis purports to establish the relationship between the radius of
the particles and the degree of localised chaos in some predefined system. The trajectories
of cloud particles of smaller radii are expected to exhibit more non-linear behaviour by virtue
of their lower mass and inertia, as we suspect particles of small-magnitude sizes to be more
dynamically sensitive to advection over a given time evolution. It is worth mentioning that the
single-molecule composition of the simulation begets the parameters of radius and mass (and
thus inertia) as being positively correlated, and we take this as an underlying assumption in
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the proceeding analysis.

As the calculated Lyapunov exponent is associated with a given trajectory x(t) in the vicinity of
the jet stream for a selected time interval in the simulation, it would be conducive to consider
a small-number collection of cloud particles as a starting formulation in the characterisation of
their behaviour. Since the computation considers the advection of an idealised Hot Jupiter, we
only consider a collection of three particles of SiO2, each differing from the other by a singular
order of magnitude, as a general proxy for a larger collection of particles. It is helpful to define
a new qualitative parameter that will be hereafter referred to as heterogeneity, which may
be described as the general measure of the difference in magnitude between particle radii for
each particle pair in an array of n particle sizes. A collection of particles of high heterogeneity
consists of radii whose differences in magnitude are larger compared to a low-heterogeneity col-
lection. This qualitative degree of heterogeneity, it should be noted, increases with increasing
particle radius for our predefined collection, as the arithmetic difference between two particle
sizes in an array of three radius elements, increases with comparably larger orders of magnitude.

Another parameter of interest is the quantitative degree of heterogeneity. This parameter is
computed alongside the qualitative description to function as a correlation pair to compare
against the Lyapunov exponent. As the selected particle radii for each collection differ by an
order of magnitude, it is appropriate to use a simple geometric mean for each particle pair, then
geometrically average the pair once more over the three elements to compute the averaged
particle size difference for that collection:

degree of heterogeneity = 3
√√

(r1r2) ·
√
(r1r3) ·

√
(r2r3)

A final quantitative parameter which will be of analytical use in establishing a numerical
relationship between two particle radii (e.g. a particle pair) for a given three-particle collection
is the magnitude of the separation vector or simply the separation, which evaluates the distance
between the cloud particles for a given time. We are interested specifically in the time-averaged
separation between the particles, which functions as a generalized measure of their relative
displacement after some trajectory. Each particle collection yields a total of three particle pairs
for three individual separation values, which can be averaged to arrive at an aggregate mean
separation for the entire particle collection:

d =
||−→r1,2||+ ||−→r2,3||+ ||−→r1,3||

3
The distances between the particle pairs over the time series (i.e. the magnitudes of the sep-
aration vectors) are computed numerically.

Physically, we expect a system of particles of large-magnitude radii (high heterogeneity) to
behave more predictably than particles of small-magnitude radii (low heterogeneity), and there-
fore assume a larger averaged Lyapunov parameter over some chosen time series, although it
is entirely possible that individual particle radii could assume a different degree of correlation
to the Lyapunov parameter than the measure of heterogeneity. Particles of low heterogeneity
(smaller radii difference α smaller radii) are more likely to have their trajectories displaced by
incident advective forces in a turbulent fluid dynamical environment.
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2.2.3 Statistical tests of correlation: the Pearson product-moment mea-
sure

The Lyapunov spectra for each three-element collection of particles alongside their correspond-
ing generated GCM positional plots are likely to provide a descriptive visual overview of the
particles’ behaviour in the time series and its associated degree of chaos, but a more robust
descriptor of such a relationship would involve the application of some statistical test to quan-
tify the extent of their correlation.

As the relationship between particle size dependency and the degree of sensitivity of their
trajectories’ initial conditions (loosely defined earlier as a general measure of its chaos), the
Pearson product-moment correlation test is used appropriately in the forthcoming assessment.
Similar to other related categories of linear regression, the Pearson correlation test takes
two continuous variables and computes the change in magnitude of one input relative to a
corresponding change in the magnitude of the other for a given polarity, and arrives at a scaled
dimensionless measure of their covariance known as the Pearson coefficient r [19]. For two
continuous variables x and y, the correlation coefficient r is given by [20]:

r =

∞

∑
i=1

(xi − x)(yi − y)√
[

∞

∑
i=1

(xi − x̄)2][
∞

∑
i=1

(yi − ȳ)2]

This measure may be used as an interpretative description of the variables’ linearity according
to the following stratification criteria, for a defined interval of −1 ≤ r ≤ 1:

Absolute magnitude of the observed coefficient Interpretation
0.00−0.10 Negligible correlation
0.10−0.39 Weak correlation
0.40−0.69 Moderate correlation
0.70−0.89 Strong correlation
0.90−1.00 Very strong correlation

Table 2.3: Sample interpretative stratifications for the Pearson coefficient [19]

A calculated coefficient of positive polarity indicates the two variables to be directly linearly
proportional, while a negative polarity signifies an equally inverse proportionality. Pearson co-
efficients of magnitudes close to 1 express a strong linear association, while magnitudes close
to or equal to 0 entail a weak or negligible correlation [21].

The following such assumptions are undertaken as implicit to the Pearson coefficient test as it
applies to the analysis [19]: (i) the correlation conforms to an approximately bi-variate normal
distribution, and (ii) the covariance between the nominal variables in the scatter demonstrates a
degree of interval linearity. Non-monotonic data sets may be utilised in the Pearson framework
insofar as the data is normally distributed; other statistical tests may be of use to measure
monotonicity instead of linearity, such as Spearman’s rank test for correlation, for example.
[22].



Chapter 3

Results

Chapter 2 explained the methods that would be used to analyse the simulations. In this
chapter, the results of the simulations and the analysis will be summed up.

3.1 Equatorial and pressure slices
In the first section, the equatorial and pressure slices are presented. Because the trajectories
of the particles are independent of the other particles plotted in the same figure, we chose
to combine all particle sizes in one equatorial slice (Figure 3.1a) and one pressure slice plot
(Figure 3.1b).

In the figure below (Figure 3.1a) the equatorial slices are presented for the particles with radii
10−5 cm, 10−4 cm, 10−3 cm, 0.01 cm, 0.1 cm and 1 cm. It can be noted that the heaviest
particles (radii 0.1 cm and 1 cm) descend quickly, while a particle with a radius of 0.01 cm
first descends slowly, but after some time descends at the same rate as the heavier particles.
The other three particles, the lightest ones, seem to not descend at all. They fluctuate around
the height at which they started. It can be seen that the heaviest particle of those three
does not fluctuate as much as the two lighter ones, this particle stays mostly at a height of
1.12×1010 cm.
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(a) Equatorial slice
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(b) Pressure slice

Figure 3.1: The equatorial and pressure slice for particles with radii 10−5 cm, 10−4 cm,
10−3 cm, 0.01 cm, 0.1 cm and 1 cm

In the second figure (Figure 3.1b) the pressure slices are presented for the same particles. In
this figure, it is possible to see that the particles not only change the height but also move
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relative to the substellar point, where all the particles started their journey. It can be observed
that the two heaviest particles (radii 0.1 cm and 1 cm) don’t move that much, they only seem
to move a bit in the longitudinal direction. The two less heavy particles (radii 10−3 cm and
0.01 cm) move a lot in the longitudinal direction but only fluctuate a bit in the latitudinal
direction, the two smallest particles (radii 10−5 cm and 10−4 cm) in the other hand change
in both the longitudinal and latitudinal direction. They start taking the same path, but after
some time they diverge from each other. The smallest particle, with a radius of 10−5 cm,
takes a path where it fluctuates around the point at 1×1010 cm latitude and −2×1010 cm
longitude, while the second-smallest particle, with a radius of 10−4 cm, stays in the range of
0 cm to −1.5×1010 cm latitude and 0 cm to −3×1010 cm longitude.

3.2 Lyapunov spectra
In the first figure, Figure 3.2a, the Lyapunov spectra for radii 10−5 cm and 10−4 cm and
10−3 cm are shown. The pink Lyapunov exponent calculated for the trajectory of the particles
with radii 10−5 cm and 10−4 cm has the greatest Lyapunov exponent at 2.04×106 s, with a
value of about 7.04×10−6 1

s . The orange Lyapunov spectrum, for radii 10−4 cm and 10−3 cm,
has the smallest Lyapunov exponent at the end, with a value of about 5.66×10−6 1

s . And the
blue Lyapunov spectrum, for radii 10−5 cm and 10−3 cm, has a value of about 5.87×10−6 1

s
at the same time. In the figure, it can be seen all spectra have a few valleys. The valleys in
the pink spectrum are smaller and less frequent than in the blue and orange spectra.

The second figure, Figure 3.2b, presents the Lyapunov spectra for radii 10−4 cm and 10−3 cm
and 0.01 cm. The pink Lyapunov spectrum for radii 10−4 cm and 10−3 cm is the same one as
the orange spectrum in Figure 3.2a. Now, this spectrum has the greatest Lyapunov exponent
value of about 5.66×10−6 1

s at 2.04×106 s. The blue Lyapunov spectrum for radii 10−4 cm
and 0.01 cm is the second greatest with a value of about 4.58× 10−6 1

s at 2.04× 106 s.
The last, orange, Lyapunov spectrum for radii 10−3 cm and 0.01 cm has a value of about
4.31× 10−6 1

s at 2.04× 106 s but jumps a few times over the blue spectrum. Just like in
Figure 3.2b, it can be noted that all spectra have a few valleys.

In Figure 3.2c the Lyapunov spectra for radii 10−3 cm, 0.01 cm and 0.1 cm can be observed.
Just as before, the pink spectrum for radii 10−3 cm and 0.01 cm is the same as the orange
in Figure 3.2b, and thus has a value of about 4.31× 10−6 1

s . This is the only spectrum
that goes on to the end of the simulation after 2.04×106 s, the two other Lyapunov spectra
end at 6.95× 105 s. At this moment, the orange spectrum for radii 0.01 cm and 0.1 cm is
the biggest with a Lyapunov exponent value of 10.81×10−6 1

s . The blue spectrum for radii
10−3 cm and 0.1 cm has a Lyapunov exponent value of 9.63×10−6 1

s . Again, it can be seen
that the spectra have valleys.

In the last figure, Figure 3.2d, the Lyapunov spectra for radii 0.01 cm, 0.1 cm and 1 cm are
shown. Again, the pink spectrum for radii 0.01 cm and 0.1 cm is the same as the orange
Lyapunov spectrum in Figure 3.2c, which means it has a Lyapunov exponent value of 10.81×
10−6 1

s at 6.95× 105 s. It can be noted that the blue Lyapunov spectrum for radii 0.01 cm
and 1 cm has a value of 4.75×10−6 1

s at 7.38×105 s. The orange spectrum, for radii 0.1 cm
and 1 cm, has a value of 6.26× 10−6 1

s at 6.95× 105 s. The only Lyapunov spectrum that
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Figure 3.2: The Lyapunov spectra

does not have valleys, in this figure, is the orange one for radii 0.1 cm and 1 cm. The other
two spectra have a few valleys.

3.3 Pearson correlation coefficient
The main parameters of interest to the analysis (the mean separation and Lyapunov values) –
together with the aggregated Pearson coefficient for the entirety of the seven, three-particle
collection data sets – are summarised in Table 3.1. The aggregated tabulated data sum-
marises the heterogeneity degree and the particle collections (of gradually increasing orders of
magnitude) according to appropriate qualitative classification strata, with each heterogeneity
criterion assuming a corresponding mean separation and mean Lyapunov value:
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Heterogeneity 3-Particle System [r1, r2, r3] (cm) Mean Separation (cm) Mean Lyapunov (1/s)
Very low [1×10−5, 1×10−4, 1×10−3] 1.5402×1010 6.3666×10−6

Low [5×10−5, 5×10−4, 5×10−3] 1.5858×1010 5.3954×10−6

Medium-low [1×10−4, 1×10−3, 1×10−2] 1.7709×1010 5.1213×10−6

Medium [3×10−4, 3×10−3, 3×10−2] 1.6004×1010 4.4378×10−6

Medium-high [1×10−3, 1×10−2, 1×10−1] 1.4454×1010 7.5888×10−6

High [3×10−3, 3×10−2, 3×10−1] 1.3524×1010 6.6417×10−6

Very high [1×10−2, 1×10−1, 3×100] 1.4665×1010 7.2979×10−6

Table 3.1: Mean separation and Lyapunov exponent values for seven three-particle systems of
varying radii heterogeneity

The intermediate averaged separation values and Lyapunov exponents (for the low, medium,
and high cases) falling in between the principal four data sets are included in the tabulation
to satisfy an appropriate sample size for the Pearson test. A numerical coefficient of 5 was
selected for the radii of the intermediate low-heterogeneity case as the simulation is unable to
run for adjacent integer values apart from 0, 1, or 5 for that particular small-radius regime,
while a coefficient of 3 was selected for the medium- and high-heterogeneity cases as those
values fall closer to an intermediate numerical point between the heterogeneity strata above
and below those cases.

A scatter diagram with a corresponding best-fit was generated for the following two correlation
pairs from the data sets in Table 3.1: (mean separation, mean Lyapunov) and (heterogeneity
degree, mean Lyapunov):

(a) Scatter plot and regression line of mean
Lyapunov exponent vs. mean separation

(b) Scatter plot and regression line of mean
Lyapunov exponent vs. heterogeneity degree

Figure 3.3: Scatter plots of correlation variables

The translucent bands around the trend lines indicate the confidence interval of the scatter
(CI = 0.95). A wideband confidence interval is expected for scatters involving smaller data
sets, and is accentuated for variables of weak correlation strength, as is the case in Figure
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3.3b. The data points corresponding to the degree of heterogeneity are linearised by assuming
the logarithm of the argument to produce a correlation with appropriate linear intervals.

Figure 3.3b is a direct graphical visualisation of the mean Lyapunov and heterogeneity columns
from Table 3.1, while Figure 3.3a takes the mean separation column and ranks the elements
by magnitude, decoupling the data set from the original heterogeneity order. This allows the
linear association of the Lyapunov-separation pair to be more clearly distinguished from the
Lyapunov-heterogeneity pair.

The Pearson correlation coefficient was calculated for the entire data set for Table 3.1, with
the mean separation and the mean Lyapunov exponent assuming the continuous variables xi
and yi from the Pearson correlation equation, respectively. The correlation pairs selected for
the correlation analysis are the heterogeneity (degree of radii difference of a particle) and the
mean particle separation to the mean Lyapunov exponent.

Pair of correlation variables Pearson coefficient
Heterogeneity (radii difference) and mean Lyapunov exponent 0.147
Mean particle separation and mean Lyapunov exponent −0.719

Table 3.2: Pearson correlation coefficients for the variables of interest

The computed Pearson coefficients from the Pearson product-moment equation are 0.147 for
the degree of the particle size difference and the mean Lyapunov exponent, and −0.719 for the
mean particle separation and the mean Lyapunov exponent, both indicating weak and strong
correlations respectively, but of opposing directionality.



Chapter 4

Discussion

In this chapter, we will analyse the results given in Chapter 3. Firstly the equatorial and
pressure slices are analysed, after that the results in the Lyapunov spectra will be discussed.
At last, the Pearson correlation coefficients that were found are explained.

4.1 Equatorial and pressure slices
In this section, we try to find out if two particles with similar sizes would behave chaotically.
We do this by combining the information received from both the equatorial slice (Figure 3.1a)
and the pressure slice (Figure 3.1b) and our knowledge about chaos. In Chapter 1.2 it was
explained that a chaotic system has sensitive dependence on the initial conditions. In Section
4.2 we will compare the Lyapunov exponents we found and showed in Section 3.2 and the
expectations we write down here.

We start by looking at the two lightest particles, those with radii of 10−5 cm and 10−4 cm.
In the first few steps they follow the same trajectory, but at some point, the lightest particle
starts to fluctuate around the point at 1×1010 cm latitude and −2×1010 cm longitude. The
behaviour we see for this cloud particle reminds us of the Lorentz attractor. Because the two
particles did diverge rather quickly in the latitudinal and longitudinal direction, as we can see
in the pressure slice (Figure 3.1b), we would suspect that the Lyapunov exponent would be
greater than zero, so we would be able to say that there is chaos here.

Now we take a look at the lightest particle, with a radius of 10−5 cm, and the particle with a
radius of 10−3 cm. Again, the first few steps look the same for these particles, but the lightest
particle changes its height at some point while the particle with a radius of 10−3 cm stays at
almost the same height at all times. Because the two particles did diverge rather quickly, in
the latitudinal and longitudinal direction as well as in the height, we again can suspect that we
have a chaotic system. The particle with a radius of 10−3 cm circles around the planet, which
leads to a fluctuating distance in the longitudinal direction. Because the distance between the
two particles in the latitudinal is not as big as for the two lightest particles, we expect to find
a smaller Lyapunov exponent, which is still bigger than zero.

It is also interesting to study the particle behaviour of the particle with a radius of 10−4 and
the particle with a radius of 10−3. These particles start on the same path, but diverge when
the lightest particle changes its height. Just like the two times before, we would expect to
find that this could be a chaotic system, but with a Lyapunov exponent smaller than the first
one, because the latitudinal distance does not get as big.

Now, look at the particles with radii of 10−4 cm and 0.01 cm. We see in Figure 3.1a, that the
particles diverge almost directly, the heaviest particle loses height, while the lightest particles
go up higher in the atmosphere. We see that this behaviour continues throughout the whole
simulation. In Figure 3.1b, we see that the particles diverge a bit in the latitudinal direction.

13
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We expect to find a Lyapunov exponent similar to the one we found for radii 10−4 cm and
10−3 cm.

The particles with radii 10−3 cm and 0.01 cm have a similar trajectory when looking at Figure
3.1b. They mostly differ in their height, but also latitudinal and longitudinal direction. This
leads to a Lyapunov exponent a bit smaller than the one before, for radii 10−4 cm and 0.01 cm.

Now we take a look at the particles with radii of 10−3 cm and 0.1 cm. Again, these particle
trajectories seem to mostly differ in their height, but now they also differ in their longitudinal
direction. The lightest particle moves around the planet, while the heavier particle drops.
Their latitudinal distance doesn’t make a big difference in the total distance between the two
particles. This leads to a small Lyapunov exponent, still bigger than zero. The particles with
radii 0.01 cm and 0.1 cm and the particles with radii 0.01 cm and 1 cm seem, just like before,
mostly to differ in their height. So we expect Lyapunov exponents similar to the Lyapunov
exponent found for radii 10−3 cm and 0.1 cm.

We see that the two heaviest particles with radii of 1 cm and 0.1 cm behave similarly, so this
looks like they don’t behave completely chaotically. They have the same latitudinal distances,
and after they moved away from each other for a short distance, they lose height at a path
that looks almost parallel to the path of the other particle. So this suggests that the Lyapunov
exponent would be rather close to zero. But because the heaviest particle falls faster than the
other particle, the distance has a height and a longitudinal aspect.

4.2 Lyapunov spectra
Firstly, looking at the results, we can see that all Lyapunov exponents found are small
(∼ 10−6 1

s). This means that although all Lyapunov exponents are greater than zero, there
isn’t much chaos in this system. Whereas all Lyapunov exponents are greater than zero, this
system is defined as chaotic (see Section 2.2.1).

Secondly, we look at all the figures, where we find some recurring developments.

• We notice that the Lyapunov exponent is generally the biggest for the smallest parti-
cles. This means that for the real particle size, we probably would have an even bigger
Lyapunov exponent.

• The next thing that stands out is the valleys we see in the Lyapunov spectra, these
can be explained: we get those dips only when the particles move all over the planet,
so when we see bands in both the equatorial and pressure slices for the longitudinal
direction. The distance between the two particles will then become larger and smaller
as the particles get farther and closer.

• The last thing that should be explained is why the Lyapunov exponents sometimes are
shorter than the others. This is because one of the particles or both particles reaches
the ground (height = 0 cm). When this happens, the rest of the simulation isn’t useful
any more, so we don’t take that part into account for the results.

In general, our results seem to fit with the things we expected for the equatorial and pressure
slice (see Figures 3.1a and 3.1b) and reported in Section 4.1.
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4.3 Pearson correlation coefficient
The numerical trend cohering the heterogeneity or the general measure of particle radii dif-
ference with the separation and Lyapunov parameters in Table 3.1 is not evident upon initial
scrutiny and appears to form a semi-random scatter if the data sets are selected to be or-
dered or ranked according to the increasing magnitude of the radii heterogeneities. A different
rank (i.e. by increasing mean separation instead of increasing heterogeneity) sheds to light a
higher-strength correlation pattern between the averaged separation and Lyapunov values.

An important remark ought to be made at the onset of the analysis: while the Lyapunov expo-
nents from the previous section assume certain trends with the radius for localised particle-pair
behaviour, the overall correlation behaves differently when considering the entire collection of
three particles. This slight eccentricity in behaviour could be the result of numerical averaging
of the Lyapunov parameters over the entire collection, which renders the distinction of the
correlation for each particle-pair to be slightly difficult to parse from the aggregated Lyapunov
exponent.

A preliminary overview of the heterogeneity-Lyapunov correlation from the values in Table 3.1
appears to signify a weakly correlated relationship for this particular rank, although it is notable
that the Lyapunov exponent steadily decreases by approximate increments of 0.5000×10−6 up
until the medium-heterogeneity case, from which the parameter shoots up to a local extremum
in the medium-high case and settles at a relatively high regime for the largest particle radii,
as is evidently seen by the deviated scatter in Figure 3.3b.

A possible reason for this trend may lie in low-heterogeneity particles of smaller radii and lower
inertia being more susceptible to trajectory displacements from the dynamical forces in the jet
stream, which was observed from the previous Lyapunov spectra graphs. The particle trajec-
tories are potentially expected to behave less non-linearly as their inertial mass for increasing
particle radii and heterogeneity increase up until a certain threshold, whereupon gravitational
settling [5] or the largest particle sizes in the high-heterogeneity collection emerges as the
dominant dynamical effect and assumes responsibility for the local Lyapunov extremum. As
the trend between the variables experiences a change in directional behaviour in the data set
by virtue of the advection-particle interaction present in the physical system, the Pearson test
registers the degree of chaos and the particle radii difference as a weak correlation.

Similarly, if we are to consider the heterogeneity-separation correlation, the trend points to a
negligible association with no apparent association for increasing values of the heterogeneity
and demonstrates an even greater random scatter in the values compared to the previous
correlation pair, although it should be noted that this variable pair is of passing interest to
the analysis, as we are largely concerned with the association of the variables to the Lyapunov
exponent itself.

The mean separation-Lyapunov correlation, on the other hand, upon ranking the values from
smallest to largest mean separation (regardless of the analogous heterogeneity), appears to
express the greatest correlation strength among the reported correlation pairs, which may be
corroborated by the magnitude of their Pearson coefficient in Table 3.2. The comparatively
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closely-bound data points relative to the line of regression in Figure 3.3a graphically indicates
a higher-strength linear scatter. The mean separation appears to be a more reliable predictor
of the non-linearity of the particles’ trajectories compared to the variable of the particle size
difference (heterogeneity).

The pressure slice positional maps serve as a visual indication of the underlying dynamics
behind the correlation: we expect the mean separation of a system of particles to be at its
local maximum for smaller particle radii to be significantly higher due to their susceptibility to
being advected into more turbulent trajectories. The characteristic swirling pattern formed by
these path vortices is a distinct qualitative expression of dynamical non-linearity, which agrees
with the computed Lyapunov exponents as it correlates to their divergent behaviour. For small
particles in a hydrodynamically active environment, turbulent velocity gradients tend to indeed
induce more chaotic orientations [23].

Regarding the significance of the values upon examining the parameters individually, the pos-
itive Lyapunov exponent values entail a minimal amount of chaos in the advective system as
λ (t) > 0, although the degree of non-linearity for each of the particle collections is minimal
with numerical variations in the order of 10−6. Thus, it would be remiss to characterise the
trajectories as significantly disordered, despite their satisfying the Lyapunov criteria for chaos.

The data purports no direct relationship among heterogeneity, separation, and the numerical
degree of chaos, as the correlation pairs among the three variables of interest assume different
signatures of linearity, and it would thus be of no analytic use to speak of a direct three-variable
correlation. The three parameters taken together assume no shared statistical directionality.

Heterogeneity and the mean Lyapunov exponent share a positive correlation of weak strength,
while the mean particle separation and the mean Lyapunov exponent share a negative correla-
tion of moderately high strength, as defined by our earlier stratification criteria. The opposing
Pearson strengths for the two correlation pairs owe themselves to the complex interplay be-
tween kinematic environmental variables (e.g. advection, gravity) and the numerical sensitivity
of their trajectories during initial conditions, as was discussed earlier.



Chapter 5

Conclusions

In this report, we have investigated the size dependence of cloud particles (SiO2) when advected
in the atmosphere of Hot Jupiters and how different cloud particle sizes behave over a period of
time, i.e., if the behaviour is chaotic or not. The Hot Jupiter GCM simulation, using necessary
equations to calculate the drag forces acting on the cloud particle and its equilibrium drift
velocity, generates three plots: Equatorial slice, Pressure slice and Lyapunov spectrum.

i From the equatorial slice, it is evident that the heavier cloud particles (of sizes 1 cm
and 0.1 cm) descend quickly while the lighter particles (of sizes 10−3 cm, 10−4 cm,
10−5 cm) does not appear to descend. Meanwhile, the descent of a cloud particle
of intermediate size (0.01 cm) seems very slow until it reaches the height of around
1.08×1010 cm, after which it rapidly falls as heavier particles did.

ii In the pressure slice, the particles move with respect to both height and substellar point
(initial position of the particles). Cloud particles of size 0.1 cm and 1 cm seem to move
longitudinally. While the other lighter particles (of sizes 0.01 cm, 10−3 cm, 10−4 cm
and 10−5 cm) move in both latitudinal and longitudinal direction. In particular, the
lighter particles (of size 10−4 cm, 10−5 cm) diverge from each other after some time.

iii In the obtained Lyapunov spectra between particles of different sizes, the Lyapunov
exponents are found to be small positive integers (in the order of 10−6 1

s). This shows
that there is not much chaos in the system, even though, the Lyapunov exponents are
greater than zero. As expected, an inverse relationship between the Lyapunov exponents
and the size of the cloud particle can be observed in the Lyapunov spectra. Although,
this trend does not hold for some particle pairs. This could be due to various factors
at hand like advection, gravity and the sensitivity degree of the initial conditions of the
cloud particle system.

Lastly, the Pearson correlation coefficient was found to establish a correlation between the re-
sults obtained. The heterogeneity and the mean Lyapunov exponent have a positive correlation
of weak strength (Pearson coefficient, r = 0.147) whereas the mean cloud particle separation
and the mean Lyapunov exponent have a negative correlation of moderately high strength
(Pearson coefficient, r = -0.719). By understanding the degree of chaos in a cloud particle
system being advected in a Hot Jupiter, especially noting how lighter particles lean towards
more chaotic behaviour than their heavier counterparts, climate and atmospheric conditions
of Hot Jupiters can be appropriately modelled. There are few future prospects for this project:

• The GCM simulations were run with the cloud particles located at the starting of the
grid. The results might be different when we vary the starting position of the particle
within the simulation.

• This project can be expanded to include other transport processes like diffusion and
convection and observe how chaotic its behaviour can get. Including all the transport
processes might give us a better understanding into the climate of Hot Jupiters.

17
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